Targeting of CYP17A1 Lyase by VT-464 Inhibits Adrenal and Intratumoral Androgen Biosynthesis and Tumor Growth of Castration Resistant Prostate Cancer

نویسندگان

  • Sankar N. Maity
  • Mark A. Titus
  • Revekka Gyftaki
  • Guanglin Wu
  • Jing-Fang Lu
  • S. Ramachandran
  • Elsa M. Li-Ning-Tapia
  • Christopher J. Logothetis
  • John C. Araujo
  • Eleni Efstathiou
چکیده

Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a validated treatment target for the treatment of metastatic castration-resistant prostate cancer (CRPC). Abiraterone acetate (AA) inhibits both 17α-hydroxylase (hydroxylase) and 17,20-lyase (lyase) reactions catalyzed by CYP17A1 and thus depletes androgen biosynthesis. However, coadministration of prednisone is required to suppress the mineralocorticoid excess and cortisol depletion that result from hydroxylase inhibition. VT-464, a nonsteroidal small molecule, selectively inhibits CYP17A1 lyase and therefore does not require prednisone supplementation. Administration of VT-464 in a metastatic CRPC patient presenting with high tumoral expression of both androgen receptor (AR) and CYP17A1, showed significant reduction in the level of both dehydroepiandrosterone (DHEA) and serum PSA. Treatment of a CRPC patient-derived xenograft, MDA-PCa-133 expressing H874Y AR mutant with VT-464, reduced the increase in tumor volume in castrate male mice more than twice as much as the vehicle (P < 0.05). Mass spectrometry analysis of post-treatment xenograft tumor tissues showed that VT-464 significantly decreased intratumoral androgens but not cortisol. VT-464 also reduced AR signaling more effectively than abiraterone in cultured PCa cells expressing T877A AR mutant. Collectively, this study suggests that VT-464 therapy can effectively treat CRPC and be used in precision medicine based on androgen receptor mutation status.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer.

VT-464 is a novel, nonsteroidal, small-molecule CYP17A1 inhibitor with 17,20-lyase selectivity. This study evaluates the anticancer activity of VT-464 compared with abiraterone (ABI) in castrate-resistant prostate cancer cell lines and xenograft models that are enzalutamide (ENZ)-responsive (C4-2) or ENZ-resistant (MR49C, MR49F). In vitro, androgen receptor (AR) transactivation was assessed by ...

متن کامل

Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors.

Relapse of castration-resistant prostate cancer (CRPC) that occurs after androgen deprivation therapy of primary prostate cancer can be mediated by reactivation of the androgen receptor (AR). One important mechanism mediating this AR reactivation is intratumoral conversion of the weak adrenal androgens DHEA and androstenedione into the AR ligands testosterone and dihydrotestosterone. DHEA and a...

متن کامل

Limited Expression of Cytochrome P450 17α-Hydroxylase/17,20-Lyase in Prostate Cancer Cell Lines

PURPOSE Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a key enzyme in the androgen biosynthesis pathway. CYP17A1 has been focused on because of the promising results of a potent CYP17A1 inhibitor in the treatment of castration-resistant prostate cancer (CRPC). A hypothesis that intratumoral androgenesis may play a role in the progression of CRPC has recently been postulated. Thus, we...

متن کامل

Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy.

The majority of prostate cancers (PCa) express high levels of androgen receptor (AR) and are dependent for their growth on testosterone produced by the testes, which is reduced in the prostate to the higher affinity ligand 5α-dihydrotestosterone (DHT). PCa growth can be suppressed by androgen deprivation therapy, which involves removal of testicular androgens (surgical or medical castration) or...

متن کامل

Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer.

Androgen-deprivation therapy for prostate cancer (PC) eventually leads to castration-resistant PC (CRPC). Intratumoral androgen production might contribute to tumor progression despite suppressed serum androgen concentrations. In the present study, we investigated whether PC or CRPC tissue may be capable of intratumoral androgen synthesis. Steroidogenic enzyme mRNAs were quantified in hormonall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016